|
отображение
Логическая связь набора значений (например, сетевых адресов в одной сети) с объектами другого набора (например, адресами в другой сети).
[http://www.lexikon.ru/dict/net/index.html]
отображение
С самой общей точки зрения это правило, по которому элементам одного множества ставятся в соответствие элементы другого множества. Поэтому иногда говорят, что отображение — это кортеж, состоящий из трех элементов: множества определения, множества значений и закона преобразования первого множества во второе. О. какого-либо множества в множество действительных или комплексных чисел обычно называют функцией, хотя иногда термин «функция» употребляют вообще как синоним слова «О». Если О. f ставит в соответствие элементу x ? A элемент f (x) ? B, то f (x) называют образом x, а x — прообразом f (x). Каждому О. соответствует обратное О. f-1 (x), ставящее в соответствие каждому образу его прообраз. Если любому прообразу соответствует единственный образ, то О. называется однозначным; если, кроме того, любому образу соответствует единственный прообраз, то О. называется взаимно однозначным. Например, функция y = x2 есть однозначное О. числовой оси на множество положительных чисел, но так как каждому положительному числу y соответствуют два числа ±?y то эта функция не взаимно однозначная. Пример взаимно однозначной функции: y = x. В экономике встречаются О., ставящие в соответствие единственному элементу много других. Например, простое бюджетное ограничение (см. Бюджетная линия) записывается так: x1p1 + x2p2 = z. Единственному значению дохода z соответствует в этом случае бесконечное число возможных значений затрат x1, x2. Такие О. называют соответствиями, многозначными функциями или точечно-множественными О. В экономико-математических исследованиях чаще всего используются О. одного многомерного пространства V в другое, U. Такие О. называются вектор-функциями, так как элементы каждого из этих пространств — векторы. Над векторами можно производить определенные действия: векторы можно складывать: a + b и умножать на скаляр: ?a. Поэтому очень большую роль играют О., сохраняющие эти операции: L(a + b) = L(a) + L(b), L(aa) = ?L(a). Такие О. называются линейными. Их называют также линейными операторами. Множество элементов из V, образом которых при линейном О. оказывается нуль пространства U, называется ядром линейного отображения L и обозначается Ker L.
[http://slovar-lopatnikov.ru/] |
EN |
|
FR |
|
|
Тематики
- сети вычислительные
- экономика
|