|
многоэкстремальные задачи
Нелинейные задачи математического программирования, целевая функция которых может иметь как глобальный, так и локальные оптимумы. Такие задачи очень сложны для решения. Причину этого можно объяснить на следующем упрощенном примере (рис. M.3). Функция y=f(x), изображенная жирной линией, — многоэкстремальна. Если двигаться по кривой от точки x1 к точке x2 (и не знать при этом дальнейшей формы кривой), то можно x2 принять за оптимальное значение переменной x: анализ покажет, что достигнут максимум функции f(x): первая производная функции в этой точке равна нулю, а вторая — отрицательна. Между тем, глобальный оптимум находится лишь в точке x3. В М.з. соответственно существуют такие допустимые наборы значений управляющих параметров (инструментальных переменных), которые являются наилучшими среди достаточно близких к ним наборов, но тем не менее не оптимальными. Один из реальных подходов к решению М.з. состоит в том, что какими-то дополнительными приемами кривая f(x) сглаживается и задача приводится к одноэкстремальной задаче программирования (см. на рис. M.3 пунктирную линию). Термин «М.з.» иногда смешивают с терминами «Векторные задачи» и «Многокритериальные задачи». Это неправильно по причинам, объясненным в ст. Многокритериальная оптимизация. Рис . М.3 Многоэкстремальная функция одного переменного (x1 = xopt)
[http://slovar-lopatnikov.ru/] |
EN |
|
FR |
|
|
EN
- multi-extremality problems
|