|
математическая теория оптимальных процессов
Дисциплина, рассматривающая математические задачи автоматического регулирования, прежде всего в технических системах (таких, как ракета, самолет и др.). Но экономистами делаются попытки применить некоторые понятия этой теории и к управлению экономическими процессами, в частности, при теоретическом анализе процессов перспективного развития и планирования, при построении и решении задач динамического программирования. Сущность оптимального автоматического регулирования состоит в том, что оно не только обеспечивает компенсацию возмущений, воздействующих на объект управления (как это делает, например, прибор, известный под названием автопилот), но и стремится к нахождению наилучшей, оптимальной траектории движения. Главный результат теории — всемирно известный «принцип максимума» выдающегося математика Л.С.Понтрягина, сформулированный так: для многих управляемых систем может быть построен такой процесс регулирования, при котором само состояние системы в каждый данный момент подсказывает наилучший с точки зрения всего процесса способ действий. Если рассматривать самолет как точку, движущуюся в пространстве, то это простой объект. В каждый данный момент можно определить его положение в пространстве: допустим, широту, долготу и высоту над уровнем моря; эти три величины в данном случае его фазовые координаты. Те или иные углы поворота рулей самолета, которыми определяется направление его полета, — управляющие параметры. Совокупность этих параметров (ограниченных определенной областью управления) называется собственно управлением, траектория полета — фазовой траекторией. Задача оптимального управления состоит в том, чтобы выбрать такие из названных величин, которые обеспечат наиболее быстрый прилет самолета на место (впрочем, могут быть и другие критерии, тогда решения задачи будут иными, например, перелет с наименьшим расходом горючего). Принцип максимума Понтрягина определяет математические условия, необходимые для того, чтобы управление оказалось оптимальным, причем без предварительного определения оптимальной траектории, а путем последовательного регулирования данного процесса. Задачи экономики, основанные на М.т.о.п., намного сложнее технических задач. Это выражается хотя бы в том, что экономические процессы характеризуются не тремя, а огромным числом фазовых координат, многими управляющими параметрами. Однако исследования в этой области имеют, как считается, хорошие перспективы.
[http://slovar-lopatnikov.ru/] |
EN |
|
FR |
|
|
EN
- mathematical theory of optimal processes
|