PTTC.PNG
Skip to main content.

математическое ожидание

Дата последнего изменения:2014.11.15
Сообщить об ошибке
  математическое ожидание

[http://www.iks-media.ru/glossary/index.html?glossid=2400324]

математическое ожидание
Одна из численных характеристик случайной величины, часто называемая ее теоретической средней. Для дискретной случайной величины X математическое ожидание равно сумме произведений возможных значений этой величины на их вероятности: Мх= ?хР(х) , а для непрерывной случайной величины — интегралу Обозначается обычно: Mx или Ex (в нашем словаре принято первое из этих обозначений). См. также Среднее значение. Математическое программирование [mathematical programming] - (см. также Оптимальное программирование) — раздел математики, который «… изучает методы решения задач на нахождение экстремума функций (показателя качества решения) при ограничениях в форме уравнений и неравенств»[1]. Оно объединяет различные математические методы и дисциплины исследования операций: линейное программирование, нелинейное программирование, динамическое программирование, выпуклое программирование, геометрическое программирование, целочисленное программирование и др. Общая задача М.п. состоит в нахождении оптимального (максимального или минимального) значения целевой функции, причем значения переменных должны принадлежать некоторой области допустимых значений (см. Область допустимых решений). В самом общем виде задача записывается так: U = f(x) ? max; x ? M, где x = (x1, x2,…, xn); M — область допустимых значений переменных x1,…, xn; f(x) — целевая функция. Частный случай задачи М.п. — «классическая задача». В ней область M представлена равенствами: g(x) = b, где g(x) — вектор функций ограничений, b — вектор констант ограничений. Названные выше разнообразные дисциплины отличаются друг от друга видом целевой функции f(x) и области М. Например, если f(x) и M — линейны, имеем задачу линейного программирования; если же дополнительно ставится условие, чтобы переменные были целочисленны, имеем задачу целочисленного программирования; если зависимость U от x (т.е. форма f) носит нелинейный характер — задачу нелинейного программирования. Развивающаяся область — стохастическое программирование, задачи которого в отличие от детерминированных характеризуются тем, что их исходные данные (все или часть) — суть случайные величины. [1] Математический аппарат экономического моделирования. М.: “Наука”, 1983, стр 8.
[http://slovar-lopatnikov.ru/]
EN
 
FR
 

Тематики

  • экономика
  • электросвязь, основные понятия

EN

  • expectation
  • expected value

 

Внимание!

Закрыть